Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.20.536837

ABSTRACT

Coronavirus (CoV) spikes mediate receptor binding and membrane fusion, making them prime targets for neutralising antibodies. In the cases of SARS-CoV, SARS-CoV-2, and MERS-CoV, spikes transition freely between open and closed conformations to balance host cell attachment and immune evasion. The open conformation exposes domain S1B, allowing it to bind to proteinaceous cell surface receptors. It also facilitates protein refolding during spike-mediated membrane fusion. However, with a single exception, the pre-fusion spikes of all other CoVs studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, where spikes more commonly transition to open states in response to specific cues, rather than spontaneously. In our study, using cryo-EM and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes upon binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state via allosteric inter-domain cross-talk. Our findings paint a more elaborate picture of CoV attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Subject(s)
Coronavirus Infections
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.03.003699

ABSTRACT

Human coronaviruses OC43 and HKU1 are respiratory pathogen of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spill-over. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase HE acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity towards clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked-out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor-binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations selected for cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and co-evolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses (IAVs). Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.25.998963

ABSTRACT

The human betacoronaviruses HKU1 and OC43 (subgenus Embecovirus) arose from separate zoonotic introductions, OC43 relatively recently and HKU1 apparently much longer ago. Embecovirus particles are studded with two types of surface projections called S (for spike) and HE (for haemagglutinin-esterase), with S mediating receptor-binding and membrane fusion and HE acting as a receptor-destroying enzyme. Together, they promote dynamic virion attachment to glycan-based receptors with 9- O -acetylated sialic acid as main constituent. We recently showed that adaptation of HKU1 and OC43 to replication in the human respiratory tract involved loss-of-function mutations in the lectin domain of HE. Here we present the cryo-EM structure of the ∼80 kDa, heavily glycosylated HKU1 HE at a global resolution of 3.4 Å. Comparison to existing HE structures reveals a drastically truncated lectin domain, incompatible with sialic acid binding, but with the structure and function of the HE esterase domain left intact. Our cryo-EM structure, in combination with mass spectrometry analysis, also describes the extent of glycosylation on the now redundant lectin domain, which forms a putative glycan shield. The findings further our insight into the evolution and host adaptation of human embecoviruses and also demonstrate the utility of cryo-EM for studying small, heavily glycosylated proteins which are intractable to X-ray crystallography.

SELECTION OF CITATIONS
SEARCH DETAIL